RAG微调Llama 3竟超越GPT-4!英伟达GaTech华人学者提出RankRAG框架
相信很多大家对RAG微调Llama 3竟超越GPT-4!英伟达GaTech华人学者提出RankRAG框架还不知道吧,今天菲菲就带你们一起去了解一下~.~!
【新智元导读】来自佐治亚理工学院和英伟达的两名华人学者带队提出了名为RankRAG的微调框架,简化了原本需要多个模型的复杂的RAG流水线,用微调的方法交给同一个LLM完成,结果同时实现了模型在RAG任务上的性能提升。
在需要大量事实知识的文本生成任务中,RAG成为了常用的LLM部署技巧。
但佐治亚理工学院和英伟达最近发表的一篇论文提出——RAG可以不止停留在用于推理的pipeline中,类似的思路完全可以移植到微调阶段,于是有了这个名为RankRAG的框架。
论文地址:https://arxiv.org/abs/2407.02485
他们的思路可以概括为:用微调拓展模型的能力,把原来RAG需要额外模型的检索、排名任务全丢回给LLM自己。
结果发现,不仅数据效率提高了,模型性能也有显著增强,相比今年5月刚提出的ChatQA-1.5系列有显著优势。
在9个通用基准和5个生物医学的知识密集型基准上,RankRAG用Llama38B/70B微调出的模型分别超过了同样基座上ChatQA-1.5的两个微调模型,Llama3-ChatQA-1.5-8B和Llama3-ChatQA-1.5-70B。
ChatQA-1.5项目地址:https://chatqa-project.github.io/
检索增强生成技术,简称为RAG(Retrieval-Augmented Generation),被广泛适用于LLM的定制化,尤其是知识密集型的NLP任务。可以帮助模型在不改变权重的情况下掌握「长尾知识」和最新信息,并适应到特定的领域。
通常情况下,RAG的工作流程大致是:对于给定问题,由一个基于文本编码的稠密模型从外部数据库中检索到top-k个文本段,然后输入给LLM进行读取,以此为基础进行生成。
来源:AWS
这个pipeline看起来非常符合直觉,也已经被广泛使用,但作者在论文开篇指出了其中的固有局限,首先就是k值的选择。
如果k值较大(比如top-100),即使是支持长上下文的窗口的LLM也很难快速读取这么多文本块。随着k值的增大,性能会很快饱和。
除了效率原因,之前还有研究表明,k值在5或10这个量级时,生成结果的准确性更高。因为过多上下文会引入不相关内容,妨碍LLM生成准确答案,
《Retrieval meets Long Context Large Language Models》https://arxiv.org/abs/2310.03025
那把k值就定在这个区间不行吗?
如果给定一个较小的k,我们需要一种机制来保证检索结果的高召回率(recall)。
鉴于检索器的表达能力有限(通常是稀疏检索模型如BM25,或中等大小的编码模型如BERT-based),通常无法捕获所有相关信息,因此实际的应用过程还会加上一个交叉编码(cross-encoding)的排名模型。
排名模型从数据库中检索到top-N个候选 (N ≫ k),再经过一次排名得到最终top-k结果。
这种方案的缺陷在于,与通用的LLM本身相比,专家排名模型的零样本泛化能力相对有限,上游检索结果的质量很可能造成下游LLM生成任务的瓶颈。这在许多实证研究中都得到了验证。
基于上述考虑,作者认为可以只使用LLM同时完成上下文检索和内容生成任务,通过设计RAG的指令调优来实现,这种新颖的框架被命名为RankRAG。
OpenAI的GPT-4报告中就发现,检索、排名过程中发展出的「确定文本块与问题是否相关」的能力对答案的生成同样有用,这两者可以被视为「双重能力」。
RankRAG在训练过程中引入了一项带指令的问答任务,让模型能够识别出与问题相关的上下文或段落,便于在推理时对检索结果进行排名。
如果将一部分排名数据集成到指令微调中,还能大大增强LLM在RAG排名任务中的性能,甚至超过了单独用LLM和10×排名数据进行微调的结果。
RankRAG微调框架
在推理阶段,RankRAG的pipeline与上述的的「检索-排名-生成」流程几乎相同,首先检索出带有相关性分数的top-N结果,然后进行重新排名并保留top-k段落,将其与问题连接到一起进行生成。
主要的不同点在于模型训练过程,使用了两个阶段的指令微调(图2)直接增强LLM的相关能力,而不是在模型外部添加额外操作。
第一阶段首先进行监督微调(SFT),128k个样例来自多个数据集的混合,包括对话数据集SODA、Dolly、OpenAssistant,长格式QA数据集ELI5(需要详细答案),LLM合成的指令,以及CoT数据集FLAN。
这个阶段的SFT主要是为了提高LLM的指令跟随能力,虽然与RAG关系不大,但可以为接下来的指令微调过程做好铺垫。
为了提升LLM的检索、排名性能,第二阶段的微调数据集由以下几个部分混合组成(表1):
第一阶段的SFT数据:用于维持指令跟随能力
上下文丰富的QA数据:涵盖了DROP、NarrativeQA、Quoref、ROPES、NewsQA、TAT-QA等数据集,每条数据包含问题、黄金上下文(golden context)和答案
会话QA数据集:如Synthetic Conversation和HumanAnnotatedConvQA,同时包括对话内容以及一份背景文档
检索增强的QA数据:不仅包括SQuAD和WebQuestions中的问题和答案,还用BM25将黄金上下文和检索到的top结果组合起来,确保每条数据都有5个上下文,其中有些上下文可能不包括问题答案,甚至是hard-negative,这是为了重点提高LLM对不相关上下文的鲁棒性
上下文排名数据:使用流行的MS Marco语义相关性数据集,将其中的黄金样本视为相关的查询-段落对 (
免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!
-
奔驰GLE作为豪华SUV市场中的佼佼者,凭借其卓越的性能、豪华的内饰以及宽敞的空间,吸引了众多消费者的关注。...浏览全文>>
-
在2025年,安徽阜阳地区的帕萨特新能源汽车市场表现非常活跃。作为一款备受关注的新能源车型,帕萨特新能源凭...浏览全文>>
-
近日,滁州地区的大众汽车经销商传来好消息:备受瞩目的2025款T-ROC探歌正式上市,并且以极具竞争力的价格吸引...浏览全文>>
-
在选择一款新能源汽车时,了解其价格和配置是非常重要的一步。安徽淮南地区的长安启源E07作为2024款的新车型,...浏览全文>>
-
阜阳长安启源A05作为长安汽车旗下的全新车型,自推出以来便凭借其独特的设计风格和丰富的配置吸引了众多消费者...浏览全文>>
-
阜阳长安启源A07作为一款备受瞩目的新能源车型,以其豪华配置和亲民的价格在市场上引起了广泛关注。这款车型不...浏览全文>>
-
安徽淮南威然2024款价格及配置详解随着汽车市场的不断更新换代,上汽大众旗下的MPV车型——威然(Viloran)凭...浏览全文>>
-
QQ多米新车报价2025款,买车省钱秘籍随着汽车市场的不断发展,消费者在选购车辆时不仅关注车型的性能和配置,...浏览全文>>
-
滁州途观X 2024款最新价格及买车省钱秘籍随着汽车市场的不断发展,大众途观X作为一款兼具时尚与性能的中型SUV...浏览全文>>
-
随着汽车市场的不断发展,大众蔚揽以其优雅的设计和卓越的性能赢得了众多消费者的青睐。作为一款兼具实用性和...浏览全文>>
- Nvidia DLSS 4 有望将游戏性能提高 8 倍
- 人工智能在预测自身免疫性疾病进展方面显示出良好的前景
- 心理物理实验揭示皮肤水分感知是如何改变的
- 科茨沃尔德公司庆祝圣诞节圆满成功
- 南法纳姆学校被评为萨里郡表现最好的小学
- 约克区九所小学将削减招生人数
- 松下新款电动汽车电池为 Lucid Gravity 带来 450 英里续航里程
- 泰国旅游呈现新趋势
- 研究人员找到在细胞水平上饿死前列腺癌肿瘤的新方法
- 领先的人工智能聊天机器人在测试中表现出类似痴呆症的认知能力下降
- 庞大的 Project Zomboid build 42 终于可以玩了
- Steam Replay 回归向您展示 2024 年您玩得最多的 PC 游戏
- Jollyes 推出强化的人才支持和招聘措施
- Karen Millen 与 Simon Harrison 共同推出全新高级珠宝系列
- 奇瑞风云A8L电动轿车刷新续航里程世界纪录
- 虚拟艺术家将别克 Cascada 带回 2026 款车型
- OnePlus 宣布推出新计划解决绿线问题
- OnePlus Watch 3 将拥有更大的电池和更薄的机身
- 研究人员发现可变剪接与自身免疫性疾病遗传之间的细胞类型特异性联系
- 科学家确定脑细胞类型是排尿的主要控制者