从ALOHA迈向Humanplus,斯坦福开源人形机器人,「高配版人类」上线
相信很多大家对从ALOHA迈向Humanplus,斯坦福开源人形机器人,「高配版人类」上线还不知道吧,今天菲菲就带你们一起去了解一下~.~!
说起前段时间斯坦福开源的 Mobile ALOHA 全能家务机器人,大家肯定印象深刻,ALOHA 做起家务活来那是有模有样:滑蛋虾仁、蚝油生菜、干贝烧鸡,一会儿功夫速成大餐:
研究团队来自斯坦福,由三个人共同打造完成。Zipeng Fu 为项目共同负责人,他是斯坦福大学 AI 实验室的计算机科学博士生,师从 Chelsea Finn 教授;Tony Z. Zhao 也是斯坦福大学的计算机科学博士生,导师也是 Chelsea Finn。
现在,继 ALOHA 之后,Zipeng Fu、Chelsea Finn 等人又联合推出了一款新的机器人研究 HumanPlus,不过这次 Tony Z. Zhao 没有出现在作者栏里,而是在致谢名单上。
HumanPlus 团队成员。
这款机器人能够自主的叠衣服,然而即使是2倍速,动作看起来也是慢吞吞:
充当仓库的搬运工,准确的将物品放置在机器狗背上的篮子里:
给大家表演个向后跳的节目,就像人类一样,扎个马步让自己稳妥一点:
可能你都不会弹的钢琴,但这次机器人会了,它不是乱弹一通,仔细听还能听出旋律来:
化身你的乒乓球搭子,来上几个回合没有问题:
像个电脑新手一样,在键盘上努力的敲出「HELLO WORLD」
打起拳来也是有模有样
值得一提的是,这次斯坦福团队公布了论文、机器人材料清单、数据集以及代码。正如 Tony Z. Zhao 所表示的「这是唯一一篇完全开源的论文,虽然我们处在一个前沿的研究时代,但充满了闭源、竞争等其他因素的限制,这个领域需要更多开放的科学,而不是酷炫的演示。」
根据材料清单我们推测完成机器人组装大约花费107,945美元。
研究介绍
论文地址:https://humanoid-ai.github.io/
论文标题:HumanPlus: Humanoid Shadowing and Imitation from Humans
长期以来,人形机器人因其类似人的形态而备受关注。这主要得益于我们周围的环境、工具等都是依据人类形态而设计的,因此人类大小的机器人在解决人类从事的任务上潜力巨大。
通过模仿人类,人形机器人为实现通用机器人智能提供了一个充满希望的途径。
然而,在实际操作中,要让人形机器人从以自我为中心的视角学习自主技能仍然面临挑战。这主要是因为人形机器人在感知和控制方面的复杂性,以及其在形态结构和执行机制上与人类之间仍存在的物理差异。此外,还缺乏一套数据处理流程,可以让人形机器人通过以自我为中心的视角学习自主技能。
基于此,斯坦福团队开发了一个全栈系统,用于人形机器人从人类数据中学习运动和自主技能。该研究首先基于40小时的人体运动数据集,通过强化学习在模拟环境中训练低级策略。然后将这一策略迁移到现实世界中,从而允许人形机器人仅使用 RGB 相机实时跟踪人体和手部运动,称为 Shadowing 系统。
通过 Shadowing,人类操作员可以远程操作人形机器人来收集全身数据,以便在现实世界中学习不同的任务。基于收集到的数据,随后进行有监督的行为克隆,使用以自我为中心的视角来训练机器人的技能策略,使人形机器人能够通过模仿人类的技能自主完成不同任务。
研究者在定制的33自由度、高180cm 的人形机器人上演示了该系统,通过多达40次演示,该系统可以自主完成诸如穿鞋站立和行走,从仓库货架上卸载物品,折叠运动衫,重新排列物品,打字以及与另一个机器人打招呼等任务,成功率为60-100%。
该研究团队发布的机器人如图2左侧所示,具有33个自由度,其中包括两个拥有6自由度的手指、两个1自由度的手腕和一个有19自由度的身体(包含:两个4自由度的手臂、两个5自由度的腿和一个1自由度的腰部)。
该系统基于 Unitree H1机器人构建,每只手臂集成了 Inspire-Robots RH56DFX Hand,通过定制手腕连接,其中每个手腕配有一个 Dynamixel 伺服电机和两个推力轴承。手和手腕均通过串行通信控制。
机器人头部安装了两个 RGB 网络摄像头(Razer Kiyo Pro),向下倾斜50度,瞳距为160毫米。手指可以施加高达10牛顿的力,而手臂可以举起重达7.5公斤的物品。腿部的电机在操作过程中可以产生高达360Nm 的瞬时扭矩。图2右侧提供了该机器人的其他技术规格信息。
人体部分和手部动作使用 SMPL-X 模型进行参数化。为了重定向身体姿态,研究人员将 SMPL-X 对应的欧拉角复制到类人模型中,即髋部、膝盖、脚踝、躯干、肩膀和肘部。机器人的每个髋部和肩部关节由3个正交旋转关节组成,因此可以视为一个球形关节。机器人的手指有6个自由度:每个食指、中指、无名指和小指各1个自由度,大拇指2个自由度。为了重定向手部姿势,他们使用中间关节的旋转来映射每个手指的对应欧拉角。并且通过使用前臂和手的全局方向之间的相对旋转,计算1自由度的手腕角度。
如图3所示,身体姿势估计和重定向在 NVIDIA RTX4090GPU 上以每秒25帧的速度运行。
实时手部姿势估计和重定向:该团队使用 HaMeR——一个基于 Transformer 的手部姿态估计器,通过单个 RGB 摄像头进行实时手部姿态估计。手部姿势估计和重定向在 NVIDIA RTX4090GPU 上以每秒10帧的速度运行。
该研究将低级策略 Humanoid Shadowing Transformer 制定为仅解码器的 Transformer,如图4左侧所示。
在每个时间步中,策略的输入是人形机器人的本体感知和目标姿态。策略的输出是人形机器人身体关节的19维关节位置设定点,这些设定点随后通过1000Hz 的 PD 控制器转换为扭矩。
随机化模拟环境和人形机器人的物理参数见表2。
如图3所示,研究者使用单个 RGB 摄像头实时估计人体和手部姿态,并将人体姿态重定向为类人目标姿态。
如图1所示,人类操作员站在人形机器人附近,将他们的实时全身运动投射到人形机器人上,并使用视线观察人形机器人的环境和行为,确保远程操作系统反应灵敏。
在被远程操作时,人形机器人通过双目 RGB 摄像头收集第一视角视觉数据。通过 shadowing,研究人员为各种现实场景任务提供了一条高效的数据收集管道,从而避免了模拟环境中真实 RGB 渲染、精确软体对象模拟和多样化任务规范的挑战。
与其他远程操作方法相比,Shadowing 系统更具优势。
以上就是关于【从ALOHA迈向Humanplus,斯坦福开源人形机器人,「高配版人类」上线】的相关内容,希望对大家有帮助!
免责声明:本文由用户上传,与本网站立场无关。财经信息仅供读者参考,并不构成投资建议。投资者据此操作,风险自担。 如有侵权请联系删除!
-
奔驰GLE作为豪华SUV市场中的佼佼者,凭借其卓越的性能、豪华的内饰以及宽敞的空间,吸引了众多消费者的关注。...浏览全文>>
-
在2025年,安徽阜阳地区的帕萨特新能源汽车市场表现非常活跃。作为一款备受关注的新能源车型,帕萨特新能源凭...浏览全文>>
-
近日,滁州地区的大众汽车经销商传来好消息:备受瞩目的2025款T-ROC探歌正式上市,并且以极具竞争力的价格吸引...浏览全文>>
-
在选择一款新能源汽车时,了解其价格和配置是非常重要的一步。安徽淮南地区的长安启源E07作为2024款的新车型,...浏览全文>>
-
阜阳长安启源A05作为长安汽车旗下的全新车型,自推出以来便凭借其独特的设计风格和丰富的配置吸引了众多消费者...浏览全文>>
-
阜阳长安启源A07作为一款备受瞩目的新能源车型,以其豪华配置和亲民的价格在市场上引起了广泛关注。这款车型不...浏览全文>>
-
安徽淮南威然2024款价格及配置详解随着汽车市场的不断更新换代,上汽大众旗下的MPV车型——威然(Viloran)凭...浏览全文>>
-
QQ多米新车报价2025款,买车省钱秘籍随着汽车市场的不断发展,消费者在选购车辆时不仅关注车型的性能和配置,...浏览全文>>
-
滁州途观X 2024款最新价格及买车省钱秘籍随着汽车市场的不断发展,大众途观X作为一款兼具时尚与性能的中型SUV...浏览全文>>
-
随着汽车市场的不断发展,大众蔚揽以其优雅的设计和卓越的性能赢得了众多消费者的青睐。作为一款兼具实用性和...浏览全文>>
- Nvidia DLSS 4 有望将游戏性能提高 8 倍
- 人工智能在预测自身免疫性疾病进展方面显示出良好的前景
- 心理物理实验揭示皮肤水分感知是如何改变的
- 科茨沃尔德公司庆祝圣诞节圆满成功
- 南法纳姆学校被评为萨里郡表现最好的小学
- 约克区九所小学将削减招生人数
- 松下新款电动汽车电池为 Lucid Gravity 带来 450 英里续航里程
- 泰国旅游呈现新趋势
- 研究人员找到在细胞水平上饿死前列腺癌肿瘤的新方法
- 领先的人工智能聊天机器人在测试中表现出类似痴呆症的认知能力下降
- 庞大的 Project Zomboid build 42 终于可以玩了
- Steam Replay 回归向您展示 2024 年您玩得最多的 PC 游戏
- Jollyes 推出强化的人才支持和招聘措施
- Karen Millen 与 Simon Harrison 共同推出全新高级珠宝系列
- 奇瑞风云A8L电动轿车刷新续航里程世界纪录
- 虚拟艺术家将别克 Cascada 带回 2026 款车型
- OnePlus 宣布推出新计划解决绿线问题
- OnePlus Watch 3 将拥有更大的电池和更薄的机身
- 研究人员发现可变剪接与自身免疫性疾病遗传之间的细胞类型特异性联系
- 科学家确定脑细胞类型是排尿的主要控制者